Законы менделя кратко и понятно

Содержание
  1. Законы наследственности Г. Менделя
  2. Первый закон Менделя
  3. Второй закон Менделя
  4. Третий закон Менделя
  5. Законы менделя кратко и понятно – Правовая помощь юриста
  6. Добро пожаловать
  7. Лекция № 17. основные понятия генетики. законы менделя
  8. Законы менделя
  9. One more step
  10. Науколандия
  11. Законы менделя кратко и понятно
  12. Законы Менделя кратко и понятно
  13. Кто такой Мендель и чем он занимался
  14. Первый закон Менделя — закон единообразия гибридов первого поколения
  15. Кодоминирование и неполное доминирование
  16. Второй закон Менделя — закон расщепления
  17. Закон чистоты гамет и его цитологическое обоснование
  18. Третий закон Менделя — закон независимого наследования
  19. Заключение
  20. Генетика. Основные понятия. Генетические законы Г.Менделя
  21. Презентация к уроку
  22. II. Объяснение нового материала.
  23. IV. Домашнее задание
  24. Законы генетики
  25. Обзор законов генетики, открытых Г. Менделем
  26. Закон Моргана — закон сцепленного наследования признаков
  27. Закон гомологических рядов наследственной изменчивости
  28. Анализирующее скрещивание
  29. Взаимодействие генов
  30. Множественное действие генов

Законы наследственности Г. Менделя

Законы менделя кратко и понятно

Грегор Иоганн Мендель (Gregor Johann Mendel) – выдающийся чешский естествоиспытатель. Он родился в Австрийской империи в простой крестьянской семье. При крещении он получил имя Иоганн.

Изучением природы мальчик увлекался с детства, когда еще работал, сперва помощником садовника, а затем – садовником.

Проучившись некоторое время в институте Ольмюца, в философских классах, он в $1843$ году постригся в монахи и принял имя Грегор.

Дальше с $1844$ по $1848$ год Грегор Мендель учился в Брюннском богословском институте и стал священником. Во время учебы он самостоятельно изучал многие науки, изучал в Венском университете естественную историю.

Именно в Вене Грегор Мендель увлекся исследованиями процессов гибридизации и статистическими соотношениями гибридов. Мендель уделял особое внимание вопросам изменений качественных признаков у растений. Объектом экспериментов он выбрал горох, который можно было вырастить в монастырском саду. Именно наблюдения за результатами этих исследований и легли в основу знаменитых «законов Менделя».

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Воодушевленный первыми успехами, Мендель перенес свои эксперименты на растение семейства астровых (скрещивал разновидности ястребинки) и проводил скрещивания разновидностей пчел. Результаты экспериментов не совпали с результатами опытов с горохом. Тогда еще не знали, что механизм наследования признаков у этих растений и животных отличается от механизма наследования у гороха.

Замечание 1

Грегор Мендель был разочарован в биологической науке. После его назначения настоятелем монастыря, он больше не занимался наукой. Но его заслугой является то, что он впервые выявил и описал статистические закономерности наследования признаков у гибридов. Ознакомимся с ними детальнее.

Первый закон Менделя

Для облегчения учета результатов эксперимента Грегор Мендель избрал растения с четко отличающимися признаками. Это были цвет и форма семян.

Для начала он получил семена «чистых линий» растений. Эти семена при дальнейшем посеве и в результате самоопыления не давали расщепления признаков.

При скрещивании разных сортов гороха – с пурпурными цветками и с белыми цветками, в первом поколении гибридов Мендель получал все растения с пурпурными цветками. Аналогичными были результаты, когда ученый брал растения гороха с желтыми и зелеными семенами или семенами гладкой и морщинистой формы.

По результатам этих опытов Грегор Мендель вывел закон единообразия гибридов первого поколения, который мы знаем, как «первый закон Менделя». Сегодня он звучит так:

«При скрещивании двух гомозиготных организмов. которые относятся к чистым линиям и отличаются друг от друга по одной паре альтернативных проявлений определенного признака, всё первое поколение гибридов (F1) окажется полностью единообразным и будет нести проявление признака только одного из родителей».

Данный закон еще называют законом доминирования признаков. Он означает, что доминирующий признак появляется в фенотипе, подавляя рецессивный.

Второй закон Менделя

Проводя дальнейшие эксперименты с гибридами первого поколения, Мендель обнаружил, что при дальнейшем скрещивании гибридов первого поколения между собой гибриды второго поколений отличаются расщеплением признаков с устойчивым постоянством.Сегодня этот закон формулируют таким образом:

Определение 1

«После скрещивания двух гетерозиготных потомков первого поколения между собой, наблюдается расщепление во втором поколении в определенном числовом соотношении: по фенотипу $3:1$, по генотипу $1:2:1$».

Он получил название закона расщепления. Он означает, что рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и потом проявляется во втором гибридном поколении.

Третий закон Менделя

В первых опытах Грегор Мендель принимал во внимание всего одну пару альтернативных признаков. Он заинтересовался вопросом, что если взять во внимание несколько признаков. Признаки начали комбинироваться между собой и поначалу вызвали у ученого замешательство.

Но при более детальном рассмотрении, Менделю удалось вывести закономерность расщепления. Оказалось, что гибриды первого поколения однообразны, а во втором поколении признаки по фенотипу расщепляются в пропорции $9:3:3:1$, независимо от другого признака.

Этот закон был назван законом независимого наследования. Сегодня его формулировка выглядит так:

Определение 2

«При скрещивании двух особей, которые отличаются друг от друга по нескольким парам (двум или более) альтернативных признаков, гены и соответствующие им признаки наследуются друг от друга независимо и могут комбинироваться во всех возможных сочетаниях (подобно как при моногибридном скрещивании)».

Закономерности, открытые Менделем предвосхитили начало новой науки – генетики.

Источник: https://spravochnick.ru/biologiya/genetika_kak_nauka/zakony_nasledstvennosti_g_mendelya/

Законы менделя кратко и понятно – Правовая помощь юриста

Законы менделя кратко и понятно

Закон расщепления Мендель посадил гибриды первого поколения гороха (которые все были желтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F2). Среди них уже встречались не только желтые, но и зеленые семена, т. е.

произошло расщепление. При этом отношение желтых к зеленым семенам было 3 : 1. Появление зеленых семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен.

В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный. У чистой линии желтого гороха два доминантных аллеля — AA. У чистой линии зеленого гороха два рецессивных аллеля — aa.

При мейозе в каждую гамету попадает только один аллель.

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя.

Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Внимание

Первый закон Менделя. Закон единообразия гибридов первого поколения Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян).

Одни имели желтые семена, другие — зеленые. После перекрестного опыления получаются гибриды первого поколения (F1).
Все они имели желтый цвет семян, т. е. были единообразны.

Фенотипический признак, определяющий зеленый цвет семян, исчез.

Второй закон Менделя.

Добро пожаловать

Законы Менделя — это основа генетики, по сей день играющие важную роль в изучении влияния наследственности и передачи наследственных признаков.

В своих экспериментах ученый скрещивал различные виды гороха, отличающиеся по одному альтернативному признаку: оттенок цветов, гладкие-морщинистые горошины, высота стебля.

Кроме того, отличительной особенностью опытов Менделя стало использование так называемых «чистых линий», т.е.
потомства, получившегося от самоопыления родительского растения. Законы Менделя, формулировка и краткое описание будут рассмотрены ниже.


Многие годы изучая и скрупулезно подготавливая эксперимент с горохом: специальными мешочками ограждая цветки от внешнего опыления, австрийский ученый достиг невероятных на тот момент результатов.

Лекция № 17. основные понятия генетики. законы менделя

Проявление некоторых генов может сильно зависеть от условий среды. Например, некоторые аллели проявляются фенотипически только при определенной температуре на определенной фазе развития организма. Это тоже может приводить к нарушениям менделевского расщепления.

Гены-модификаторы и полигены. Кроме основного гена, контролирующего данный признак, в генотипе может быть еще несколько генов-модификаторов, модифицирующих проявление основного гена.

Важно

Некоторые признаки могут определяться не одним геном, а целым комплексом генов, каждый из которых вносит свой вклад в проявление признака.

Такой признак принято называть полигенным. Все это тоже вносит нарушения в расщепление 3:1.

Законы менделя

Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии — гены) Г.

Мендель предложил обозначать буквами латинского алфавита.

Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель — большой, а рецессивный — маленькой.

Второй закон Менделя.

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми.

One more step

Таким образом, горох с желтыми семенами образует только гаметы, содержащие аллель A.

Горох с зелеными семенами образует гаметы, содержащие аллель a.

При скрещивании они дают гибриды Aa (первое поколение).

Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался желтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa.

Причем гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa).

Таким образом получаем 1AA : 2Aa : 1aa. Поскольку Aa дает желтый цвет семян как и AA, то выходит, что на 3 желтых приходится 1 зеленый.

Третий закон Менделя. Закон независимого наследования разных признаков Мендель провел дигибридное скрещивание, т.

е.

Науколандия

Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин… Сексуальность Если у вас есть один из этих 11 признаков, тогда вы один из самых редких людей на Земле Каких людей можно отнести к категории редких? Это личности, которые не размениваются по мелочам.

Их взгляд на мир отличается широтой…. Новый век Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен.

Интересно, что первоначально он был местом для хр… Одежда Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки.

Изначально…
Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали гаметы другого родителя.

В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких, 1 желтая морщинистая, то есть наблюдается расщепление в отношении 9:3:3:1.

Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1.

Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т.

е. независимо от другой пары признаков.

Одна чистая линия гороха имела желтые и гладкие семена, а вторая — зеленые и морщинистые.

Все их гибриды первого поколения имели желтые и гладкие семена. Во втором поколении ожидаемо произошло расщепление (у части семян проявился зеленый цвет и морщинистость). Однако при этом наблюдались растения не только с желтыми гладкими и зелеными морщинистыми семенами, но и с желтыми морщинистыми, а также зелеными гладкими.

Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, — в другой, то при мейозе они могут независимо друг от друга комбинироваться.

Законы менделя кратко и понятно

Переоткрытие законов Менделя Гуго де Фризом в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии произошло лишь в 1900 году. В это же время были подняты архивы и найдены старые работы Менделя.

В это время научный мир уже был готов к тому, чтобы воспринять генетику.

Началось ее триумфальное шествие. Проверяли справедливость законов о наследовании по Менделю (менделировании) на все новых и новых растениях и животных и получали неизменные подтверждения.

Все исключения из правил быстро развивались в новые явления общей теории наследственности. В настоящее время три основополагающих закона генетики, три закона Менделя, формулируются следующим образом. Первый закон Менделя.

Единообразие гибридов первого поколения.

Все признаки организма могут быть в своем доминантном или рецессивном проявлении, которое зависит от присутствующих аллелей данного гена.

Тщательный и длительный анализ полученных данных позволил вывести исследователю законы наследственности, которые позже получили название «Законы Менделя».

Прежде чем приступить к описанию законов, следует ввести несколько понятий, необходимых для понимания данного текста: Доминантный ген — ген, признак которого проявлен в организме.

Обозначается заглавной буквой: A, B. При скрещивании такой признак считается условно более сильным, т.е.

он всегда проявится в случае, если второе родительское растение будет иметь условно менее слабые признаки. Что и доказывают законы Менделя. Рецессивный ген — ген в фенотипе не проявлен, хотя присутствует в генотипе. Обозначается прописной буквой a,b.

Гетерозиготный — гибрид, в чьем генотипе (наборе генов) есть и доминантный, и рецессивный ген некоторого признака.
При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов.

Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом.

Таким образом, третий закон Менделя формулируется так: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга. Рецессивные летали.

У Менделя получились одинаковые численные соотношения при расщеплении аллелей многих пар признаков. Это в частности подразумевало одинаковую выживаемость индивидов всех генотипов, но это может быть и не так.

Источник: http://dipna5.ru/zakony-mendelya-kratko-i-ponyatno/

Законы Менделя кратко и понятно

Законы менделя кратко и понятно

В этой статье кратко и понятно описываются три закона Менделя. Эти законы — основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип — это совокупность генов организма, а фенотип — его внешних признаков.

  • Кто такой Мендель и чем он занимался
  • Первый закон Менделя — закон единообразия гибридов первого поколения
  • Кодоминирование и неполное доминирование
  • Второй закон Менделя — закон расщепления
  • Закон чистоты гамет и его цитологическое обоснование
  • Третий закон Менделя — закон независимого наследования
  • Заключение

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель — известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя — закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого — белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые— a. Генотип одного родителя — AA (пурпурные), а второго — aa (белые). От первого родителя будет унаследован ген A, а от второго — a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной — рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены — гетерозиготным.

Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный.

Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками — это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой — за белые, то половина лепестков камелии станут красными, а остальные — белыми.

Такое явление называют кодоминированием.

Неполное доминирование — похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя — закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA — пурпурные цветки (25%);
  • aa — белые цветки (25%);
  • Aa — пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета — доминантный, а зелёного — рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета — это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете — а их две — находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт — закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели — гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя — закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость — B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали — другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

ABAbaBab
ABAABBAABbAaBBAaBb
AbAABbAAbbAaBbAabb
aBAaBBAaBbaaBBaaBb
abAaBbAabbaaBbaabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя — основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел — генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика — это один из самых интересных и перспективных разделов биологии.

Источник: https://1001student.ru/biologiya/zakony-mendelya.html

Генетика. Основные понятия. Генетические законы Г.Менделя

Законы менделя кратко и понятно

  • Батракова Ксения Андреевна, учитель биологии

Разделы: Биология, Конкурс «Презентация к уроку»

Презентация к уроку

Загрузить презентацию (1,9 МБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: сформировать представление о генетике – науке, изучающей наследственность и изменчивость организмов, познакомить с основными понятиями науки.

Задачи:

  • образовательная: изучить основные исторические моменты в истории генетики как науки, показать многообразие методов, используемых генетикой; изучить основные понятия генетики;
  • развивающая: формировать умения и навыки по использованию генетической терминологии и символов для объяснения закономерностей наследования признаков;
  • воспитательная: продолжить способствовать формированию культуры умственного труда через овладение навыками общения в процессе беседы, диалога.

Обеспечение занятия: компьютер, мультимедийный проектор.

Тип урока: изучение нового материала.

Метод проведения: комбинированный урок

Ученик должен

  • иметь представление об истории становления науки, об основных направлениях в изучении наследственности;
  • знать основные генетические понятия и генетические законы:
  • уметь применять генетические законы и терминологию при решении генетических задач.

II. Объяснение нового материала.

Раздел биологии, изучающий такие важные свойства организма, как сохранение и передача наследственной информации из поколения в поколение, а также возможность изменяться под действием окружающей среды – это генетика. Молодая наука имеет свою долгую историю, и не всегда ее открытия были понятны и восприняты в обществе.

Сегодня на уроке мы поговорим с вами об истории генетики, об ученых, внесших свой вклад в ее развитие. Мы определим место этой науки в современном мире и выясним, какое значение имеют генетические знания для человечества в целом.

Четких представлений о закономерностях наследования и наследственности вплоть до конца XIX века не было за одним существенным исключением. Этим исключением была замечательная работа Г. Менделя, установившего в опытах по гибридизации сортов гороха важнейшие законы наследования признаков, которые впоследствии легли в основу генетики.

В своих опытах он использовал горох. Причем, для опытов выбирались растения, относящиеся к чистым линиям – родственные организмы, у которых в ряду поколений проявляются одни и те же признаки.

А почему горох, а не другое растение?

  1. Горох – это самоопыляемое растение.
  2. Цветки гороха защищены от проникновения чужой пыльцы.
  3. Гибриды вполне плодовиты и поэтому можно следить за ходом наследования признаков в ряду поколений.

Для опытов Мендель избрал несколько четко различающихся признаков:

  1. форма семян;
  2. окраска семян;
  3. окраска и форма бобов;
  4. окраска цветков;
  5. расположение цветков;
  6. длина стебля.

Суть предложенного Менделем метода заключалась в следующем: он скрещивал растения, различные по одной паре признаков, а затем производил анализ результатов каждого скрещивания. Метод Менделя получил название гибридологического или метода скрещивания.

Результаты, которые получил Мендель в своих опытах, получили названия «законов Менделя». Перед тем как преступить к изучению самих законов, нужно усвоить основные генетические понятия и термины.

Ген – это участок молекулы ДНК (или хромосомы), определяющий возможность развития отдельного элементарного признака, или синтез одной белковой молекулы.

Каждый ген располагается в определенном участке хромосомы – локусе.

В гаплоидном наборе хромосом только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (соматические клетки) содержаться две гомологичные хромосомы и соответственно два гена, определяющие развитие признака. Эти гены расположены в одинаковых локусах гомологичных хромосом и называются аллельными генами.

Аллельные гены – это пара генов, определяющая альтернативные признаки организма. Аллельные гены располагаются в одинаковых участках (локусах) гомологичных хромосом.

Альтернативные признаки – взаимоисключающие или контрастные признаки. Часто один из альтернативных признаков является доминантным, а другой рецессивным.

Для генов приняты буквенные обозначения. Если два аллельных гена полностью соответствуют по структуре, т.е. имеют одинаковую последовательность нуклеотидов, их можно обозначить так: АА или аа.

Доминантный признак (АА) – это признак проявляющийся у гибридов первого поколения при скрещивании чистых линий.

Рецессивный признак (аа) – передается по наследству при скрещивании, но не проявляется у гибридов первого поколения.

Половые клетки несут какой-либо один признак. При слиянии половых клеток образуется зигота. В соответствии от того какие аллели одного и того же гена она содержит, различают гомозиготу и гетерозиготу.

Гомозигота – это клетка или организм содержащие одинаковые аллели одного и того же гена. Гомозигота – это организм, образующий один сорт гамет, в потомстве не наблюдается расщепления, имеют одинаковые гены.

Гетерозигота – это клетка или организм, содержащие разные аллели одного и того же гена. Это организм образующий 2 сорта гамет.

Совокупность всех генов одного организма называют генотипом. Генотип это не только сумма генов. Возможность и форма проявления гена зависит от среды. В понятие среды входит не только внешние условия, но и присутствие других генов. Гены взаимодействуют друг с другом и могут повлиять на проявление действия соседних генов.

Совокупность всех признаков организма, формирующихся при взаимодействии организма с средой – фенотип. Сюда относят не только внешние признаки (цвет глаз, рост), но и биохимические (структура белка, активность фермента), гистологические (форма и размер клеток, строение тканей и органов), анатомические (строение тела и взаимное расположение органов).

Законы Менделя.

Моногибридным скрещиванием называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков.

Следовательно, при таком скрещивании прослеживается закономерности наследования только двух вариантов признака, развитие которых обусловлено парой аллельных генов.

Например, признак – цвет семян, альтернативные варианты – желтый или зеленый. Все остальные признаки, свойственные данным организмам во внимание не принимаются.

Первый закон Менделя (закон единообразия гибридов первого поколения). У всех особей данного поколения признак проявляется одинаково.

Сформулировать этот закон можно следующим образом: при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающимся друг от друга по одной паре альтернативных признаков, все первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Результаты скрещивания растений гороха, различающиеся по окраске семян (желтые и зеленые):

Р.: АА (желтые) × аа (зеленые)

g.: А а

F1.: Аа (желтые).

Ph.: 100%

Единообразие гибридов первого поколения.

Второй закон Менделя (закон расщепления).

Расщепление – это распределение доминантных и рецессивных признаков среди потомков в определенном соотношении.

Если потомков первого поколения – гетерозиготных особей, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей проявляются в определенном числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только проявляется во втором гибридном поколении (F1).

F1. : Аа (желтые семена) × Аа (желтые семена)

g.: А а А а

F2.: АА; Аа; Аа; аа (1:2:1)

Ph.: 3 желтые семена : 1 зеленые семена (3:1)

Таким образом второй закон Менделя можно сформулировать следующим образом: при скрещивании потомков первого поколения между собой, во втором поколении наблюдается расщепление: по генотипу 1:2:1; по фенотипу 3:1.

Это означает, что среди потомков 25% организмов будут обладать доминантным признаком и являться гомозиготой, 50% потомков, также с доминантным фенотипом, окажутся гетерозиготой, а остальные 25% особей, несущих рецессивный признак, будут гомозиготны по рецессивному признаку.

Третий закон Менделя «Закон чистоты гамет».

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы с генетической точки зрения чисты, т.е. несут только один ген из аллельной пары.

При образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

В процессе развития гамет у гибрида гомологичные хромосомы во время первого мейотического деленияпопадают в разные клетки. Образуется два сорта гамет по данной аллельной паре. Цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, различающиеся по двум генам: окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые).

При таком скрещивании признаки определяются различными парами генов: одна аллель отвечает за цвет семян, другая за форму семян.

Желтая окраска горошин (А) доминирует над зеленой (а), а гладкая форма (В) над морщинистой (b).

При образовании гамет у гибрида первого поколения из каждой пары аллельных генов в гамету попадает только один.

Поскольку в организме образуется много половых клеток, у гибрида F1 возникает четыре сорта гамет в одинаковом количестве: АВ; аВ; Аb; ab. Во время оплодотворения каждая из гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета.

Р.: ААВВ (желтый гладкий) × ааbb (зеленый морщинистый)

g.: АВ аb

F1.: АаВb (желтый гладкий) × АаВb

g.: АВ; аВ; Аb; ab АВ; аВ; Аb; ab

F2.:

ABAbaBab
АВ AABB желтый гладкийAABb желтый гладкийAaBB желтый гладкийAaBb желтый гладкий
АbAABb желтый гладкийAAbb Желтый морщинистыйAaBb желтый гладкийAabb желтый морщинистый
aBAaBB желтый гладкийAaBb желтый гладкийaaBB зеленый гладкийaaBb зеленый гладкий
abAaBb желтый гладкийAabb желтый морщинистыйaaBb зеленый гладкийaabb зеленый морщинистый

9 (жг) : 3 (жм) : 3 (зг) : 1 (зм)

Из приведенной выше решетки Пеннета видно, что при этом скрещивании возникают 9 видов генотипов: AABB, AABb, AaBB, AaBb, AAbb, Aabb, aaBB, aaBb, aabb, т.к. в 16 сочетаниях есть повторения. Эти 9 генотипов проявляются в виде 4 фенотипов: желтые – гладкие; желтые – морщинистые; зеленые – гладкие; зеленые – морщинистые.

Теперь модно сформулировать III закон Менделя: при скрещивании двух гомозиготных особей, отличающимся друг от друга по двум парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

IV. Домашнее задание

Задача.

У человека глухонемота наследуется как рецессивный признак, а подагра – доминантный признак. Определите вероятность рождения глухонемого ребенка с предрасположенностью к подагре, у глухонемой матери, но не страдающей подагрой, и у мужчины с нормальным слухом и речью, болеющего подагрой.

ЛИТЕРАТУРА

  1. Андреева, Н.Д. Общая биология 10-11 класс / Н.Д. Андреева – М.: Мнемозина, 2011. – 365с.
  2. Перевозкин, В.П. и др. Генетика. Руководство к лабораторным и практическим занятиям: учебное пособие / В.П. Перевозкин, С.С. Бондарчук, И.Г. Годованная; ГОУ ВПО «Томский государственный педагогический университет». – Томск: Изд-во ТГПУ, 2009. – 116с.
  3. Тремов, А.В. Общая биология 10-11 класс (профильный уровень)/А.В. Тремов, Р.А. Петросова – М.:Владос, 2011.
  4. Шустанова, Т.А. Репетитор по биологии для старшеклассников и поступающих в ВУЗы / Т.А. Шустанова. – Изд. 4-е, доп. и перераб. – Ростов н/Д: «Феникс», 2010. – 526с.

Приложение.

18.02.2014

Источник: https://xn--i1abbnckbmcl9fb.xn--p1ai/%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8/642809/

Законы генетики

Законы менделя кратко и понятно

При рассмотрении основных законов генетики необходимо отметить, что они носят статистический характер, т.е. эти законы можно обнаружить при изучении очень большого количества объектов.

Так, изучив 10 особей данного вида, обнаружить тот или иной закон нельзя — слишком мало параллельных наблюдений.

Чем больше параллельных наблюдений будет сделано, тем четче и рельефнее будет проявляться тот или иной генетический закон.

Обзор законов генетики, открытых Г. Менделем

Используя гибридологический метод исследования, Г. Мендель открыл законы независимого наследования признаков. Эти законы были открыты при изучении закономерностей наследования у растений гороха, при этом применялось моногибридное и дигибридное скрещивание.

1. Первый закон Менделя — закон единообразия всех особей первого поколения для любого вида скрещивания (как моно-, так и полигибридного скрещивания): при любом скрещивании все особи первого поколения (F1) характеризуются одинаковым фенотипом по скрещиваемому признаку.

Этот фенотип определяется либо доминантным признаком, либо возникают промежуточные признаки, либо появляются новые признаки, как результат взаимодействия генов.

Так, при скрещивании гороха с желтыми и зелеными семенами в первом поколении все растения имеют желтые семена (доминантно-рецессивный характер наследования).

При скрещивании фиалки Ночная красавица с белыми и красным цветами все растения первого поколения имеют розовые цветы (промежуточный характер наследования).

Для скрещивания берут гомозиготные организмы. Например, материнский организм имеет гены желтого цвета семени (обозначим АА), а отцовский — гены зеленого цвета семени (обозначим аа). Тогда гаметы матери (яйцеклетки) содержат по одному гену желтого цвета семени (А) и гаметы отца (спермии) — по одному гену зеленого цвета семени (а).

При оплодотворении образуется гетерозигота, содержащая гены рассмотренных выше альтернативных признаков; обозначается Аа. Так как в данном случае наблюдается доминантно-рецессивный характер наследования признаков, все особи первого поколения (F1) имеют семена желтого цвета, т. е. характеризуются одинаковым фенотипом по данному признаку.

В случае равноценного характера взаимодействия генов наблюдается промежуточный характер наследования. В этом случае в тоже возникают гетерозиготные организмы (обозначенные А1А2) с одинаковым фенотипом по конкретному признаку. Так, при скрещивании фиалки Ночная красавица с белыми и красными цветами в F1 все растения имеют розовые цветы.

2. Второй закон Менделя — закон расщепления признаков (закон моногибридного скрещивания) — иногда его называют правилом расщепления признаков.

Этот закон справедлив для моногибридного скрещивания и проявляется при скрещивании разных особей, полученных при моногибридном скрещивании во втором поколении (F2): при скрещивании особей первого поколения, полученного после моногибридного скрещивания, у потомства наблюдается расщепление признаков в определенном количественном отношении, которое для доминантно-рецессивного наследования составляет 3:1, а для промежуточного наследования 1:2:1 (цифра 2 означает, что гибриды относятся к особям с промежуточным признаком).

Рассмотрим примеры.

1. Скрещивая растения гороха с гладкими семенами (F1 полученное после скрещивания растений с гладкими и морщинистыми семенами), получаем второе поколение (F2), при этом 3/4 потомства имеют гладкие семена, а 1/4 — морщинистые.

Это явление можно объяснить так. Растения первого поколения гетерозиготны (обозначим их Аа). Они дают два вида гамет (обозначим их А и а). Эти гаметы характерны и для отцовского, и для материнского организмов.

При реализации процессов оплодотворения возможны четыре сочетания (в них на первом месте стоит ген, полученный от организма матери, его выделим): АА, Аа, аА и аа.

Сочетание АА соответствует гомозиготе по доминантному признаку (гладкие семена); сочетания Аа и аА соответствуют гетерозиготе (гладкие семена), а последнее сочетание аа гомозиготно по рецессивному признаку. Таким образом, во втором поколении возникают три разных генотипа по данному признаку и им соответствует только два фенотипа.

2. Скрещивая растения фиалки с розовыми цветками (F1), получаем F2, в котором 1/4 часть потомства имеет белые цветки, 1/4 часть — красные, а половина потомства (2/4) — розовые. Объяснение этого явления такое же, как и для примера 1, но здесь наблюдаем разницу — трем генотипам по данному признаку (А1A1, А1А2 и А2А1; А2А2) соответствуют три фенотипа (белый, розовый и красный цветки).

3. Третий закон Менделя — закон полигибридного скрещивания или закон независимого расщепления признаков.

Этот закон проявляется во втором поколении при дигибридном и полигибридном (три-, тетра- и др.

) скрещивании: при скрещивании особей первого поколения, полученного при скрещивании по дигибридному (полигибридному) типу, в потомстве (во втором поколении) происходит расщепление признаков (для доминантно-рецессивного характера наследования) в количественном отношении, выражаемом формулой (3 + 1)n, где n = 2, 3, 4 и т. д.

Для цитологического объяснения удобно применять решетку Пеннета. Проанализируем сведения, приведенные на рисунке.

Сначала скрещивали растения вида горох обыкновенный с желтыми и гладкими семенами (ген желтого цвета семени обозначим А, а гладкой формы — В) с растениями, у которых были зеленые морщинистые семена (ген зеленого цвета семени обозначим а, ген морщинистой формы — b).

Все полученные растения первого поколения гетерозиготны и имеют желтые гладкие семена (доминантно-рецессивное наследование, при котором гены желтого цвета и гладкой поверхности семян доминируют над генами зеленого цвета и морщинистой формы). Назовите закон, проявившийся в данном случае.

После скрещивания растений первого поколения получили F2 — второе поколение, у которых наблюдаем закон независимого расщепления признаков: 1/16 часть всех растений имеет зеленые морщинистые семена, 3/16 — зеленые и гладкие; 3/16 — желтые и морщинистые, а остальные (9/16) — желтые и гладкие. Следовательно, при дигибридном скрещивании наблюдается появление в F2 четырех фенотипов (по данным признакам).

При дигибридном скрещивании каждое растение образует четыре вида гамет, а для двух родителей эти гаметы могут дать 16 сочетаний.

В результате получается, что 1/16 часть поколения является гомозиготной по рецессивному и столько же — по доминантному признакам, а все остальные особи гетерозиготны хотя бы по одному признаку; абсолютно гетерозиготных (по двум признакам) только 4/16 части поколения.

Подсчет показывает, что четырем фенотипам при дигибридном скрещивании соответствует девять фенотипов (сделайте этот подсчет самостоятельно).

Необходимо отметить, что третий закон Менделя справедлив, если гены, ведающие данными признаками, находятся в разных парах хромосом; так, ген окраски семени располагается в одной паре гомологических хромосом, а ген, определяющий форму семян, — в другой.

Вероятно, существуют случаи, когда гены, ведающие теми или иными признаками, содержатся в одной паре хромосом. Для таких вариаций законы Менделя (кроме первого) не применимы. Эти случаи подчиняются закону Моргана.

Закон Моргана — закон сцепленного наследования признаков

Ряд организмов имеет небольшое число хромосом, поэтому многие гены, определяющие различные группы альтернативных признаков, находятся в одной гомологичной паре хромосом, т.е. являются сцепленными и передаются потомству вместе. Так, у плодовой мушки дрозофилы ген, определяющий длину крыльев, и ген, ответственный за цвет тела, находятся в гомологичных хромосомах.

Дигибридное скрещивание, проведенное по данным признакам во втором поколении, не даст независимого расщепления признаков, т. е. не будет соответствовать третьему закону Менделя. Это явление обнаружил Т. Морган и сформулировал его в форме закона сцепленного наследования:

При дигибридном скрещивании организмов, у которых гены находятся в одной паре гомологичных хромосом, во втором поколении наблюдается расщепление признаков не по третьему, а по второму закону Менделя.

Скрещивая мушек дрозофил с темным цветом тела и нормальными крыльями (доминирующие признаки) с мушками, имеющими укороченные крылья и серое тело (рецессивные признаки), было получено гетерозиготное поколение (F1) с темными телами и нормальными крыльями.

При скрещивании особей первого поколения получили организмы, у которых 1/4 часть поколения имела укороченные крылья и серое тело, а 1/3 часть поколения — нормальные крылья и темное тело. Это объясняется тем, что гены окраски тела и длины крыльев располагаются в одной паре гомологических хромосом, т. е. являются сцепленными.

Однако среди особей F2 наблюдали и насекомых, имеющих темное тело и укороченные крылья, и особей с серым телом и нормальными крыльями. Это объясняется кроссинговером, при котором хромосомы в результате конъюгации и перекрещивания обмениваются участками гомологических хромосом.

Но эти явления носят случайный характер и не подчиняются математическим закономерностям.

Закон гомологических рядов наследственной изменчивости

В процессе изучения закономерностей наследования мутационной (наследственной) изменчивости Н. И. Вавилов открыл закон, известный в науке под названием закона гомологических рядов наследственной изменчивости, который был сформулирован следующим образом:

Если виды и роды генотипически связаны друг с другом, единством происхождения, то они образуют ряды форм организмов, сходных по своим признакам, т. е. гомологические ряды.

Так, пшеница, рожь, ячмень — это филогенетически близкие виды — роды класса однодольных покрытосеменных растений. Они являются злаками. В природе распространены остистые формы злаков, так как остистость является формой приспособления злаковых растений против поедания их животными.

Для практических нужд человек вывел безостые формы, которые для хозяйственной деятельности более удобны, чем остистые.

В процессе выведения безостых сортов злаков все эти три вида, принадлежащие к разным родам, прошли одинаковые этапы «искусственной эволюции», давая сходные промежуточные формы:

остистые формы → малоостистые формы → безостые формы.

Эти формы характерны и для пшеницы, и для ржи, и для ячменя.

Гомологические ряды известны не только для злаков, но и для других растений.

Анализирующее скрещивание

Как было показано выше, для выявления закономерностей наследования признаков необходимо первичному скрещиванию подвергать гомозиготные особи.

Однако фенотип по данному признаку не всегда является признаком гомозиготности данного организма, например горох с желтыми семенами может быть как гомозиготным (АА) по доминантному признаку, так и гетерозиготным (Аа).

Поэтому необходим метод выявления гомозиготности, которым является анализирующее скрещивание.

Для анализирующего скрещивания используют организмы, обладающие рецессивным альтернативным признаком, и эти организмы скрещивают с организмами, гомозиготность которых необходимо установить.

Если в первом поколении не происходит расщепления признаков, то данные организмы являются гомозиготными по доминантному признаку, в противном случае (в этом поколении появятся организмы, обладающие рецессивными признаками) — исследуемые организмы гетерозиготны.

Рассмотрим пример. При скрещивании морских свинок с короткой шерстью (рецессивный признак) (аа — обозначение родительского организма, который дает гаметы а) со свинками с длинной шерстью (доминантный признак) в первом поколении получили потомство с длинной шерстью.

Вывод — длинношерстные свинки являются гомозиготными (АА — обозначение родительского организма, который дает гаметы А), так как зигота первого поколения будет соответствовать обозначению Аа. Случай, когда длинношерстные свинки были гетерозиготными, охарактеризуйте самостоятельно.

Ответьте также на вопрос: можно ли для анализирующего скрещивания использовать гомозиготные организмы, обладающие доминантными признаками и почему? Докажите свой ответ, используя цитологические представления.

Взаимодействие генов

При изучении закономерностей наследования признаков необходимо учитывать характер воздействия одних генов на другие.

В предыдущих подразделах было показано, что аллельные гены оказывают определенное воздействие друг на друга, при котором наблюдается или доминантно-рецессивный характер взаимодействия, или при воздействии аллельных генов друг на друга возникает новый признак, промежуточный между исходными признаками — при одинаковом воздействии генов друг на друга.

В генетических исследованиях было обнаружено, что взаимодействовать между собой могут и неаллельные гены, и при их взаимодействии у организма появляются новые признаки, т.е. возникает новый фенотип.

Так, при скрещивании кур с розовидным и ореховидным гребнями получили первое потомство кур с гороховидными гребнями.

Скрещивание особей друг с другом привело к расщеплению признаков не по второму закону Менделя (как это предполагалось, ведь внешне скрещивание было моногибридным), а по третьему закону — закону независимого расщепления признаков.

Было обнаружено, что 1/16 часть потомства имела простой гребень, 3/16 — розовидный, 3/16 — ореховидный, а остальные (9/16) — гороховидный. Следовательно, розовидная и ореховидная формы гребня определяются не одним геном, а являются результатом взаимодействия двух неаллельных генов, так как характер расщепления признаков соответствует дигибридному скрещиванию.

Множественное действие генов

Генетиками было установлено, что один ген может влиять либо на отдельный конкретный признак, либо оказывать влияние на несколько признаков, т.е. иметь множественное действие.

Так, у водосбора имеется ген окраски цветка, при этом ген красной окраски оказывает влияние на окраску листьев (у водосбора с красными цветами листья фиолетовые).

Кроме того, этот ген оказывает влияние на длину стебля и массу семян — стебель у водосбора с красными цветами более длинный, а семена имеют большую массу, чем семена у водосбора с другой окраской цветка.

Мушка дрозофила имеет ген, определяющий цвет глаз. Если у дрозофилы содержится ген, вызывающий отсутствие пигмента в глазе, то эти мушки имеют малую плодовитость, более короткую продолжительность жизни и специфическую окраску внутренних органов.

Источник: https://www.polnaja-jenciklopedija.ru/biologiya/zakony-genetiki.html

Правовая помощь